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Modeling, Diagnostics And Prognostics Of A

Two-Spool Turbofan Engine

Rama K. Yedavalli∗ Praveen Shankar† Majid Siddiqi

Department of Aerospace Engineering, The Ohio State University, Columbus, OH

Al Behbahani‡

Air Force Research Laboratories, WPAFB, OH

Model-based diagnostic/prognostic techniques have the potential to predict, within rea-
sonable bounds, the remaining useful life of critical system components. Due to the numer-
ous uncertainties in the operation of a turbine engine and unavailability of accurate engine
models, prognostics continue to pose a significant challenge. There is a need to develop an
engine prognostic approach that can accommodate different damage modes, sensor failures,
material properties, dynamic load histories and damage accumulation. Using an accurate
physics-based model of the engine one can develop such a prognostic approach. We present
a nonlinear dynamical model of a two-spool turbine engine developed from first principles.
The simulation model has been implemented using MATLAB/Simulink. It is used with the
Kalman Filter-based diagnostic technique previously discussed in literature to detect and
isolate sensor faults. A literature review of the developments in the area of prognostics is
also presented, along with the problems and challenges.

Nomenclature

Cp3 = Specific Heat in Compressor J/kgK
Cp4 = Specific Heat in Turbine J/kgK
Cvol = Combustor Volume m3

Cv = Constant Volume Specific Heat J/kgK
ηmech = Mechanical Efficiency
γ = Specific Heat Ratio
IL = Polar Moment of Inertia of Low Pressure Spool kgm2

IH = Polar Moment of Inertia of High Pressure Spool kgm2

M = Mach Number
NL = Low Pressure Spool Speed RPM
NH = High Pressure Spool Speed RPM
P2 = Pressure at LPC inlet Pa
P26 = Pressure at HPC inlet Pa
P3 = Pressure at Combustor inlet Pa
P4 = Pressure at HPT inlet Pa
P45 = Pressure at LPT inlet Pa
P5 = Pressure at Nozzle inlet Pa
R = Universal Gas Constant
ρ4 = Density of fluid in Combustor kg/m3

T2 = Temperature at LPC inlet K
T26 = Temperature at HPC inlet K
T3 = Temperature at Combustor inlet K
T4 = Temperature at HPT inlet K
T45 = Temperature at LPT inlet K

∗Associate Fellow
†Member
‡Member
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T5 = Temperature at Nozzle inlet K
W2 = Mass flow rate through LPC kg/s
W3 = Mass flow rate through HPC kg/s
W4 = Mass flow rate through HPT kg/s
W45 = Mass flow rate through LPT kg/s
Wnoz =Mass flow rate through Nozzle kg/s
Intercomponent Volumes
V26 = LPC - HPC m3

V3 = HPC - Combustor m3

V45 = HPT - LPT m3

V6 = LPT - Nozzle m3

I. Introduction

Aircraft engines constitute a complex system, requiring adequate monitoring to ensure flight safety and
timely maintenance.1 Conventional maintenance strategies (like corrective and preventive maintenance) are
not adequate to fulfill the needs of expensive and high availability systems, such as the turbine engine.2

Condition-based predictive maintenance is needed to assess the future health of engines, based on observed
data and available knowledge about the system.
Diagnostics can be defined as an assessment about the current (and past) health of a system based on
observed symptoms. Prognostics is the assessment of the future health of a system. Prognostic techniques
can help provide early detection and isolation of precursor and/or incipient fault condition to a component
failure, and can also help manage as well as predict the progression of various faults to component failure.3

The prognostic module would also perform failure prognosis, which involves both forecasting of system
degradation based on observed system condition (current diagnostic state and available operating data),
and prediction of useful remaining life of the engine. Prognostic results are therefore used for making
proactive decisions about preventive and/or evasive actions with the objectives of maximizing the service
life of replaceable/serviceable components, minimizing operational risks, and reducing costs incurred during
inefficient schedule-based preventive maintenance.4

The construction of a nonlinear dynamic simulation model of the engine is identified as an important first step
for the development of prognostic techniques. The implementation and validation of well known diagnostic
techniques on this simulation model is seen as the next step. Finally the data obtained from the diagnostic
module for different failures would form the basis for implementing prognostic techniques.
The paper is organized as follows. Section 2 gives an extensive survey of literature for prognostic techniques.
Section 3 addresses the development of a nonlinear dynamical model of the two spool turbine engine that
has been based on the mathematical model available in Ref. 5. A reduced order linear model for the turbine
is presented in Section 4 and this linear model is used to design a bank of Kalman filters for state estimation
in Section 5. Section 6 presents some diagnostic results for certain sensor failures. Conclusions and future
work are presented in Section 7.

II. Prognostics - Literature Review

The key stages in any prognostic process are:

• Detection and isolation (i.e., diagnostics)

• Prognosis (prediction of the course of a fault, and prediction of useful remaining life given the past
and current system information)

• Decision making (about maintenance and mission planning)

Compared to diagnostics, the field of prognostics is relatively new, and hence there is less available technical
literature. Most prognostic efforts are still in their infancy, and therefore results are not easily available in
the public domain.
The fundamentals of prognostics, and the difficulties involved in predicting the remaining useful life, have
been described by Engel et.al.3 Emphasis was laid on the estimation and importance of accuracy and confi-
dence in the prediction. Prognostics is described to be fundamentally different from a static, a priori estimate
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of life expectancy (i.e., Mean time to failure, MTTF). The authors define prognostics as a remaining life
estimation methodology that is condition-based and dynamic in both accuracy and uncertainty. Prognostics
are shown to be more accurate as remaining life decreases. The paper also presents the variation of the
prediction accuracy, precision and confidence with damage accumulation.
A generic prognostic and health management architecture for aerospace applications (for predicting the time
to conditional or mechanical failure) was proposed by Roemer et.al.6 The architecture emphasizes the inte-
gration of anomaly detection, diagnostic and prognostic reasoners through an integrated model of the entire
system. Demonstration of the technical approaches proposed was done by implementing algorithms for:

• Detection of unhealthy surge control valve operation and performance degradation associated with an
Auxiliary Power Unit (APU)

• Prediction of the time for the APU to reach an exhaust gas temperature limit (hot section lifing)

• Model-based prognostics for a Power Take Off shaft

Brotherton et.al have identified three different approaches for the development of prognostic techniques.7

The first category includes approaches that develop physical models of the system based on component be-
havior and then validate it. The second category includes systems that follow a rule of thumb. This category
includes artificial intelligence / rule-based expert systems / inference engines. The third category includes
approaches that develop statistical models that ’learn’ based on real system data (neural networks and data
mining systems).
Various Artificial Intelligence (AI) techniques have been used by researchers to address the problem of prog-
nostics. These techniques are categorized as data-driven prognostics, and are derived directly from system
operating data. These data-driven approaches are based on statistical learning techniques, from the theory
of pattern recognition. Examples include fuzzy pattern recognition and neural networks. In data-driven
prognostics, the AI techniques are trained on features that progress through a failure (e.g., training a neural
network by some vibration feature data). Once trained, the neural network architecture can be used to
intelligently predict these same feature progressions for different test cases.
Wang et.al develop a dynamic wavelet neural network (DWNN) based prognostics algorithm, and suggested
a method for its performance assessment.8 The DWNN transformed sensor data to the time evolution of a
fault pattern, and predicted the remaining useful life of a bearing. As with all neural networks techniques,
the DWNN model had to be trained by using vibration signals of defective bearings with varying crack
geometries. The model was then used to predict the crack evolution until failure occurred.
Roemer et.al have addressed the problem of prediction confidence levels.9 A method was proposed to achieve
the highest overall prediction confidence levels by finding the optimal combination of measured system data,
data fusion algorithms and associated architecture. The main advantage of using neural networks is their
ability to learn the faulty and normal operating signatures from actual test data and help with the reliable
classification of faults in engines, without requiring detailed system models.1 However, the efficacy of data-
driven techniques is dependent on the quantity and quality of system operational data.
Model-based prognostic approaches make use of an explicit mathematical model of the system being moni-
tored. These can be either physical or statistical models.7 The advantage of model based techniques is the
ability to incorporate physical understanding of the system being monitored.
A comprehensive engine bearing prognostic approach that utilizes available sensor information on-board the
aircraft such as rotor speed, vibration, lube system information and aircraft maneuvers to calculate the re-
maining useful life for the engine bearings is presented by Orsagh et.al.10 The algorithms developed utilized
intelligent data fusion architectures to optimally combine sensor data, with probabilistic component models
to achieve the best prognostic results. The authors proposed the use of model-based estimates when no
diagnostic indicators are present and monitored engine features at later stages when failure indications are
detectable.
Garga et.al describe a hybrid reasoning approach that is capable of integrating domain knowledge (in the
form of rules), and test and operational data (sensor data) from the system, to assess the condition of the
system being monitored.11 This approach is illustrated with an industrial gearbox example. Two types of
reasoning techniques are defined - implicit reasoning techniques (such as Artificial Neural Networks) that
transform observed data into an assessment of the health of the system, and explicit reasoning techniques
(such as rule-based expert systems) that encode explicit knowledge gained from maintenance personnel or
system designers to allow interpretation of fault conditions based on the values of observed data. The limita-
tions of each of these systems are also identified. The limitations of rule-based systems include: (a) inability
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to handle both explicit and implicit knowledge simultaneously (combinatorial explosion); (b) consistency
maintenance. The limitations of Neural Networks are: (a) hard to explain reasons why the network made
specific decisions; (b) long time needed by the training techniques to converge. The authors suggest com-
bining these two approaches to exploit their advantages and eliminate their disadvantages.
A prototype health monitoring and prognostic system for Gas Turbine Engines is discussed by Greitzer
et.al.12 The system comprises a set of sensors mounted on the turbine engine, a data acquisition system (for
collecting and processing sensor signals) and microprocessors to process and analyze the information, and
perform statistical prediction analyses. Artificial Neural Networks and rule-based algorithms are used for
diagnostics purposes, while predictive trend analysis is used to predict future engine conditions. Prognostics
is accomplished by trending results from the diagnostic module. Both short-term and long-term trends are
computed using linear regression on the diagnostic values.
Kacprzynski et.al have developed a health monitoring scheme that can detect, classify and predict developing
engine faults.13 The development of an integrated prognostic and diagnostic framework is discussed. The
prognostic module utilizes a physics-based, stochastic model. The generic prognostic and health management
architecture emphasizes the integration of anomaly detection, diagnostic and prognostic techniques through
an integrated model of the entire system. The diagnostic results are combined with past history information
to train neural-network based algorithms for continuously updating projections on remaining useful life.
An integrated prognostic process was developed by Luo et.al, based on data collected from model-based sim-
ulations under nominal and degraded conditions.2 The prognostic algorithm developed was demonstrated
by conducting a simulation study on an automotive suspension system.

III. Two Spool Turbine Engine Simulation Model

A dynamic model of a two-spool turbofan engine was developed using the MATLAB simulation environ-
ment and its Simulink toolbox. The schematic configuration of the turbofan engine that was simulated is
shown in Figure 1. The HP Compressor and HP Turbine are on one shaft (driven by the High Speed Rotor),

Figure 1. Schematic Configuration of the Two-Spool Turbofan Engine

while the LP Compressor (Fan) and LP Turbine are on the other shaft (driven by the Low Speed Rotor).
Bleed effects (for air bleed from the compressor and turbine cooling air bleed) are not currently considered
in the model.
The engine simulation model consists of the static elements - Inlet, Single stage fan (or LPC), High pres-
sure compressor (HPC), Combustor, Low pressure turbine (LPT), High pressure turbine (HPT) and Main
nozzle which are modeled as lumped parameter thermodynamic systems, represented by performance maps,
constant coefficients, and thermo and aero-dynamic relationships and the dynamic elements which include
the following: Intercomponent volumes, Low speed rotor and High speed rotor. In the model, the rotor
dynamics (for the high speed and low speed rotors) is represented by the equation of conservation of angular
momentum. The mixing volume dynamics are represented by the equations of conservation of mass and
energy.
Based on the mathematical model and computational procedures for the various engine components as de-
scribed in Ref 5, each component of the turbofan engine was developed using C-program based S-functions in
Matlab/Simulink. Fan, Compressor and Turbine maps were used accordingly to model the fan, HPC, HPT
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and LPT components. The dynamic elements were represented by the corresponding differential equations.
For the turbofan engine model being developed, the 4 Mixing Volume components and 2 Rotor components
resulted in a set of 8 nonlinear dynamical equations.
The 8 state variables include:

1. HPC Inlet Pressure (P26)

2. Combustor Inlet Pressure (P3)

3. Combustor density (ρ4)

4. HPT Inlet Temperature (T4)

5. Low Pressure Spool Speed (NL)

6. High Pressure Spool Speed (NH)

7. LPT Inlet Pressure (P45)

8. Nozzle Inlet Pressure (P6)

The dynamical equations for the various states are as follows:

˙P26 = (1 +
γ − 1

2
M2)

1
γ−1 RT26

W2 −W3

V26
(1)

Ṗ3 = (1 +
γ − 1

2
M2)

1
γ−1 RT3

W3 −W4 − u

V3
(2)

ρ̇4 =
W3 −W4 + u

Cvol
(3)

Ṫ4 =
Cp3T3W3 − Cp4T4W4 + u LHV

CvT4Cvolρ̇4
(4)

ṄL =
3600

4π2NLIL

[
W45Cp4(T45− T5)−

W2Cp3(T26 − T2)
ηmech

]
(5)

ṄH =
3600

4π2NHIH

[
W4Cp4(T4 − T45)− W3Cp3(T3 − T26)

ηmech

]
(6)

˙P45 = (1 +
γ − 1

2
M2)

1
γ−1 RT45

W4 −W45

V45
(7)

Ṗ6 = (1 +
γ − 1

2
M2)

1
γ−1 RT6

W45 −Wnoz

V6
(8)

The Simulink model of the turbine engine was created by arranging (stacking) the various engine com-
putational modules in a configuration similar to that shown in the schematic configuration . In such a
configuration, the exit gas condition of a component forms the inlet gas condition of the next component.
These individual computational blocks were then interconnected to form the complete engine simulation
model.
During simulation of the engine, the set of 8 nonlinear dynamical equations representing the dynamics of
the turbine engine system is solved to determine the engine conditions during each time step, provided the
initial operating point data for the engine components is specified.

IV. Linearization And Control

The Turbine Engine model was simulated in open loop with a constant value of fuel flow. It is assumed
that the engine is being run in stationary conditions. The values of the various parameters were recorded
when the three states NL, NH and T4 reached approximate steady state values. These parameter values were
used to linearize the nonlinear equations representing the low pressure spool speed, high pressure spool speed
and turbine inlet temperature. The outputs measured include NL, NH and Overall Pressure Ratio(OPR). A
fictitious output(Fy) involving a combination of the 3 states is considered in this paper to ensure observability
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with every subset of 3 outputs. This is done so that the diagnostic technique involving the use of bank of
Kalman filters can be applied to the model as an example. The reduced order linear system is given by

ẋ = Ax + Bu x ∈ <3 u ∈ < (9)
y = Cx y ∈ <4

where x =
(

NL NH T4

)

A =

 312.003 0 −689.27
0 1872.4 −6305
0 0 −3.371


B =

 0
0

−5.91e7



C =


1 0 0
0 1 0
0 0 3.74
1 1 3.74


A simple PID controller is implemented for the nonlinear system to regulate the high speed rotor speed
NHto a predefined setpoint.

V. Engine Sensor Fault Diagnostics Using Bank Of Kalman Filters

This section discusses the use of a bank of Kalman Filters for sensor fault diagnostics in Turbine Engine
systems. This technique has been adopted from Ref 14 and the implementation of the same is described in
the following subsection.
The Kalman Filter is an estimator for the linear-quadratic problem, which is the problem of estimating the
instantaneous state of a linear dynamic system perturbed by white noise - by using measurements linearly
related to the state but corrupted by white noise. To control a dynamic system, it is essential to know the
entire state of the system. For applications where it is not always possible to measure every variable that
needs to be controlled, the Kalman filter provides a means for inferring the missing information from indirect
(and noisy) measurements.
With the Engine Simulation model that was developed, the model-based fault detection approach is imple-
mented, which consists of a bank of Kalman filters that is used for sensor fault detection and isolation (FDI).
Each Kalman filter is designed for detecting a specific sensor fault. In the event that a sensor fault does
occur, all filters except the one using the correct hypothesis will produce large estimation errors, thereby
isolating the sensor that has failed.

A. Sensor Fault Detection

The Kalman Filter problem requires the output variables of the plant and the control input commands for
estimating the augmented state vector and the sensor measurements. A bank of ’m’ Kalman filters (m is the
number of outputs) is used to implement the sensor fault detection logic as shown in Figure 2. As mentioned,
the control input and a subset of the sensor output measurements are fed to each of the m Kalman filters.
The sensor that is not used by a particular filter is the one being monitored by that filter for fault detection
(Example: the ith filter uses the sensor subset that excludes the ith sensor). Hence each filter estimates the
augmented state vector using (m− 1) sensors. Therefore if sensor i is faulty, all filters will use a corrupted
measurement, except for filter i. Filter i will thus be able to estimate the augmented state vector from
fault-free sensor measurements, whereas the estimates of the remaining filters will be distorted by the fault
in sensor i. Once the augmented state vector estimate is found, the sensor measurements can be estimated
using the Kalman Filter system of equations.
For each filter, the residual vector is generated(Equation (10))

ei = ye
i − y (10)
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Figure 2. Sensor Fault Detection Using Bank of Kalman Filters

where:
y is the output of the plant
ye

i is the output estimate of the Kalman filter i
The concept of Kalman Filters for Output estimation was extended to achieve Sensor Fault Detection and
Isolation (FDI) for the engine simulation model. The method currently simulates a fault in a sensor by
adding a step to the actual output generated by the simulation model. The Bank of Kalman Filters is used
for detecting this fault that was deliberately introduced into the sensor measuring NH . The inputs to each
Kalman filter include the control input and a subset of the sensor output measurements. Hence the sensor
subsets fed to the 4 Kalman filters are:
Sensor Subset y1 contains measurements of NH , OPR and Fy

Sensor Subset y2 contains measurements of NL, OPR and Fy

Sensor Subset y3 contains measurements of NL, NH and Fy

Sensor Subset y4 contains measurements of NL, NH and OPR
Hence each of the 4 Kalman Filters estimates the output using 3 sensor measurements (faulty) and the
control input. In this case, since the sensor measurement 2 is faulty, all filters except for filter 2 will use
a corrupted measurement. Filter 2 will thus be able to estimate the engine outputs from fault-free sensor
measurements, whereas the output estimates of the remaining filters (i.e., filters 1, 3 and 4) will be distorted
by the fault in sensor 2.

VI. Results

The bank of Kalman filters was implemented on the nonlinear dynamical model of the two spool turbofan
engine with a fault in the high speed rotor measurement sensor.The fault is introduced as a step of magnitude
10000 at time=0.001 seconds. The weighted sum of squares residuals (WSSR) for each of the Kalman filters
were calculated as

WSSRi = V i(ei)T (
∑

)−1ei (11)

where
∑

= diag(σ2). The vector σ is the noise standard deviation and the scalar V i is the weighting factor.
The term ei is the residual vector generated by taking the difference between the actual output(non-faulty)
and the output of the ith Kalman filter. The non-faulty output is assumed to be available from a model that
runs simultaneously.

A. No Sensor Faults

The plots for the Kalman filter estimates are seen in Figures 3, 4, 5 and 6. The high speed and low speed
rotor speeds are shown in Figure 7. (Note that the Kalman filter estimates are the perturbed values from
the operating point around which the system has been linearized.)
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Figure 3. Kalman Filter 1 Output Estimates

Figure 4. Kalman Filter 2 Output Estimates
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Figure 5. Kalman Filter 3 Output Estimates

Figure 6. Kalman Filter 4 Output Estimates
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Figure 7. Rotor Speeds of the Engine Simulation

B. Fault in High Speed Rotor Measurement

The plots for the Kalman filter estimates are seen in Figures 8,9,10 and 11. The residual vectors and WSSR
for the 4 Kalman filters are shown in Figures 12 and 13 respectively. We note that the estimates of the
outputs from Kalman Filter 1,3 and 4 have higher error than Kalman Filter 2. WSSR plots for Kalman
Filter 1,3 and 4 are also seen to be high whereas the WSSR for the Kalman Filter 2 goes to zero.

Figure 8. Kalman Filter 1 Output Estimates
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Figure 9. Kalman Filter 2 Output Estimates

Figure 10. Kalman Filter 3 Output Estimates
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Figure 11. Kalman Filter 4 Output Estimates

Figure 12. Residual Vectors for the 4 filters
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Figure 13. WSSR for the 4 filters

VII. Conclusions and Future Work

The main contribution of this paper is the development of a nonlinear dynamical model of a two spool
turbine engine using MATLAB/Simulink environment. The model can be adapted to various engines by im-
plementing appropriate component maps for the compressors and turbines. A PID controller is implemented
to control the speed of the high speed rotor. The model, developed from first principles is linearized about
an operating point and the linear model is used for the implementation of the Kalman filter based diagnostic
technique that has been developed previously in literature for the isolation and detection of sensor faults.
The paper also presented a survey of prognostic techniques for turbine engines. Future work includes the
validation of the nonlinear engine model for different flight conditions, development of other diagnostic tech-
niques that do not require observability from all outputs and implementation of a model-based prognostic
technique that utilizes engine operating point data and the data obtained from the the diagnostic module.
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